Code: 20ME6601

III B.Tech - II Semester – Regular Examinations - APRIL 2024

MICRO AND NANO MANUFACTURING (HONORS in MECHANICAL ENGINEERING)

Duration: 3 hours Max. Marks: 70

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level CO – Course Outcome

			BL	СО	Max. Marks			
	UNIT-I							
1	a)	Discuss the methods of creating nano structures.	L2	CO1	7 M			
	b)	Nanotechnology has been incorporated	L2	CO1	7 M			
		widely in medicinal field. Elaborate on the						
		challenges faced in the field.						
OR								
2	a)	Describe the following:	L2	CO1	14 M			
		(i) Gas Condensation Processing						
		(ii) Chemical Vapor Condensation						
UNIT-II								
3	a)	Compare and contrast SEM and TEM.	L4	CO1	9 M			
				CO2				
	b)	Explain the fundamental principle of	L2	CO1	5 M			
		operation of an optical microscope.		CO2				

		OR						
4	a)	Explain the process of scattering of X-rays	L2	CO1	7 M			
		from various sources.		CO2				
	b)	Discuss the magnitude of size scale, their	L2	CO1	7 M			
		structure and method of observation.		CO2				
	UNIT-III							
5	a)	Illustrate Lithography process with the help	L3	CO1	7 M			
		of a neat sketch.		CO3				
	b)	What is nano finishing? Explain its	L2	CO1	7 M			
		significance and describe any one nano		CO3				
		finishing technique.						
	OR							
6		Explain in details the steps involved in	L2	CO1	14 M			
		MEMS fabrication using Bulk		CO3				
		Micromachining with the help of neat						
		sketches.						
UNIT-IV								
7	a)	What is Nanoimprint lithography? Explain	L2	CO1	9 M			
		its implementation with reference to		CO3				
		electronic and optical nanodevice						
		fabrication.						
	b)	What are inertial sensors? List its types and	L2	CO1	5 M			
		applications.		CO3				
	OR							
8	a)	Compare and contrast Optical MEMS and	L4	CO1	14 M			
		RF MEMS.		CO3				

UNIT-V									
9	a)	Describe the mechanism of material	L2	CO1	7 M				
		removal in Micro-drilling process.		CO4					
	b)	Explain the piezoelectric nano grinding	L2	CO1	7 M				
		process.		CO4					
	OR								
10	a)	Elaborate the factors responsible for surface	L2	CO1	7 M				
		finish in micro-milling process.		CO4					
	b)	Provide some insights on the applications of	L3	CO1	7 M				
		ultra-precision process in semi-conductor		CO4					
		and electronics field.							